We use cookies to enhance the usability of our website. If you continue, we'll assume that you are happy to receive all cookies. More information. Don't show this again.
The plasma membrane, also known as the cell membrane or cytoplasmic membrane, is the barrier that encloses the cell and protects the intracellular components from the surroundings. The plasma membrane is a thin semi-permeable membrane consisting of a lipid bilayer and associated proteins, each constituting about 50% of the total mass. Example images of proteins localized to the plasma membrane can be seen in Figure 1.
In the subcellular section, 2286 genes (11% of all protein-coding human genes) have been shown to encode proteins that localize to the plasma membrane (Figure 2). A Gene Ontology (GO)-based functional enrichment analysis of genes encoding proteins that localize to the plasma membrane shows enrichment of genes associated with biological processes related to structural organization of the cell, cell signalling and cellular response to extracellular stimuli, transport across the plasma membrane, and cell adhesion. Similarly, the enriched GO terms for molcular functions revolve around channel and transporter activity, and binding to proteins associated with the plasma membrane. About 80% of the plasma membrane proteins localize to other cellular compartments in addition to the plasma membrane, with co-localization between the plasma membrane and actin filaments, vesicles or the cytosol being overrepresented.
Figure 1. Examples of proteins localized to the plasma membrane. EGFR is a transmembrane glycoprotein that binds to Epidermal Growth Factor (detected in A-431 cells). CTNNB1 plays a key role in regulation of transcription in response to the Wnt signalling pathway, but also in the formation of adherens junctions as a subunit of the cadherin complex (detected in A-431 cells). EZR plays a key role in cell surface structure adhesion, migration and organization (detected in A-431 cells).
11% (2286 proteins) of all human proteins have been experimentally detected in the plasma membrane by the Human Protein Atlas.
829 proteins in the plasma membrane are supported by experimental evidence and out of these 121 proteins are enhanced by the Human Protein Atlas.
1832 proteins in the plasma membrane have multiple locations.
266 proteins in the plasma membrane show single cell variation.
Proteins are mainly involved in endocytosis and cellular response to extracellular stimuli, cell signalling, transport, cell structure and cell adhesion.
Figure 2. 11% of all human protein-coding genes encode proteins localized to the plasma membrane. Each bar is clickable and gives a search result of proteins that belong to the selected category.
The plasma membrane is composed of a lipid bilayer, in which lipids constitute half and proteins the other half of the total mass in most human cell types. Phospholipids, which are composed of a hydrophilic phosphate group and two hydrophobic fatty-acid chains, make up the fundamental structural element in the plasma membrane (Jacobson K et al. (2019); Kobayashi T et al. (2018),Alberts B et al, 2002b. The inner and outer leaflet of the bilayer is held together by non-covalent interactions between the hydrophobic tails, which point towards each other and away from the hydrophilic faces of the membrane. In addition to phospholipids, the plasma membrane of animal cells contains two other major lipid classes; glycolipids and cholesterol. While cholesterol is usually almost as abundant as phospholipids, glycolipids only constitute about 2% of the lipids of the plasma membrane and are found only in the outer leaflet. The second major component of the plasma membrane is proteins. They can be divided into integral membrane proteins that cross the complete bilayer, peripheral membrane proteins that are anchored into one leaflet of the lipid bilayer, and surface proteins that bind to the polar heads of phospholipids or other membrane proteins. The composition of the plasma membrane is dynamic and adapts to changes in the environment as well as to the cell cycle. At physiological temperatures, the cell membrane is fluid and flexible, while at cooler temperatures, it becomes gel-like.
While the plasma membrane is behaving like a two-dimensional fluid, in which the lipids and proteins are not in fixed positions, it is still organized in different microdomains and specialized regions (Krapf D. (2018); Jacobson K et al. (2019); Kobayashi T et al. (2018)). These include lipid rafts, caveolae, protrusions and cell junctions. Cell junctions (Figure 3) consist of regions with protein complexes that mediate contact or adhesion with neighbouring cells or with the extracellular matrix (Garcia MA et al. (2018)). The major types of cell junctions in vertebrates include gap junctions, tight junctions, and anchoring junctions. The latter includes desmosomes, hemidesmosomes and adherens junctions. Desmosomes mediate cell-cell adhesion through transmembrane linker-proteins called cadherins, which connect to intermediate filaments within the cell and to cadherins on neighbouring cells. Hemi-desmosomes instead contain integrins, which also connect to intermediate filaments in the cytosol, but to components of the extracellular matrix instead of neighbouring cells. Adherens junctions can contain cadherins or integrins, but in this case connects to actin filaments in the cytosol.
A selection of proteins suitable to be used as markers for the plasma membrane is listed in Table 1. A list of highly expressed genes encoding proteins that localize to the plasma membrane can be found in Table 2.
Table 1. Selection of proteins suitable as markers for the plasma membrane.
Figure 3. Examples of proteins localized to different types of cell junctions. CDH17 (Cadherin 17) is a membrane-associated glycoprotein. Cadherins are calcium dependent cell adhesion proteins (detected in CACO-2 cells). GJB6 is a gap junction protein through which small materials diffuse into neighboring cells (detected in RT4 cells). TJP3 plays a role in the linkage between the actin cytoskeleton and tight junctions (detected in CACO-2 cells).
Figure 4. 3D-view of the plasma membrane in U2OS, visualized by immunofluorescent staining of EZR. The morphology of plasma membrane in human induced stem cells can be seen in the Allen Cell Explorer.
The function of the plasma membrane
The plasma membrane is involved in a variety of cellular processes (Alberts B et al, 2002b). The main function of the plasma membrane is to separate and protect the intracellular environment from the extracellular space. The plasma membrane is semi-permeable and selectively regulates the passage and transport of various molecules and compounds in and out of the cell. For small molecules, such as ions, cross-membrane cellular transport can occur by passive osmosis and diffusion, but transport against the concentration gradient requires the help of ion pumps. For larger molecules, like hormones and enzymes, transport occurs by endocytosis, exocytosis or with the help of transmembrane protein transporters or channels. The plasma membrane also provides structural integrity, shape and polarity to cells by anchoring the cytoskeleton and by attaching the cell to the extracellular matrix and to other cells (Orlando K et al. (2009)). These physical connections, as well as the presence of receptors or other factors with a role in signal transduction, are also essential for cell-cell and cell-ECM communication. Moreover, the plasma membrane has a central role in cellular motility and polarity (Eaton RC et al. (1991)).
A rupture in the plasma membrane leads to the impairment of cell integrity and function, resulting in cell lysis and cell death unless rapidly repaired. Mutations in genes encoding proteins that localize to the plasma membrane have been associated with numerous human diseases. For example, mutations in genes encoding channel- and transporter proteins have been linked to cystic fibrosis, cardiac arrhythmia, diabetes, skeletal muscle defects, and neurological disorders. Moreover, disturbances in the composition of membrane lipids and proteins may lead to a variety of diseases related to lipid metabolism (Simons K et al. (2002)).
Gene Ontology (GO)-based functional enrichment analysis of genes encoding proteins localizing to the plasma membrane shows enrichment of terms describing functions that are well in-line with the known functions of the plasma membrane. The most highly enriched terms for the GO domain Biological Process are related to cell adhesion, cell signalling and structural organization of the plasma membrane (Figure 5a). Enrichment analysis of the GO domain Molecular Function gives top hits for terms related to binding to adhesion molecules and receptors, as well as receptor activity and channel activity (Figure 5b).
Figure 5a. Gene Ontology-based enrichment analysis for the plasma membrane proteome showing the significantly enriched terms for the GO domain Biological Process. Each bar is clickable and gives a search result of proteins that belong to the selected category.
Figure 5b. Gene Ontology-based enrichment analysis for the plasma membrane proteome showing the significantly enriched terms for the GO domain Molecular Function. Each bar is clickable and gives a search result of proteins that belong to the selected category.
Plasma membrane proteins with multiple locations
Approximately 80% (n=1832) of the plasma membrane proteins detected in the subcellular section also localize to other cellular compartments (Figure 6). The network plot shows that the most common additional locations for proteins that localize to the plasma membrane are the cytosol, nucleoplasm, vesicles and actin filaments. Proteins that localize to both the plasma membrane and to the cytosol are overrepresented, perhaps reflecting that many proteins, such as adaoptor proteins, move between the cytosol and the inner surface of the plasma membrane as part of signalling pathways. There is also an overrepresentation of proteins that localize to the plasma membrane and to actin filaments. Indeed, actin filaments are often concentrated just beneth the plasma membrane and anchored to the plasma membrane through various actin-binding proteins. This close connection between actin filaments and the plasma membrane determines cell shape and is involved in a variety of cell surface activities. Overrepresentation of proteins that localize to both the plasma membrane and vesicles may reflect the numerous transport vesicles that deliver newly synthesized lipids and proteins to the plasma membrane. Examples of multilocalizing plasma membrane proteins can be seen in Figure 7.
Figure 6. Interactive network plot of the plasma membrane proteins with multiple localizations. The numbers in the connecting nodes show the proteins that are localized to the plasma membrane and to one or more additional locations. Only connecting nodes containing more than one protein and at least 0.7% of proteins in the plasma membrane proteome are shown. The circle sizes are related to the number of proteins. The cyan colored nodes show combinations that are significantly overrepresented, while magenta colored nodes show combinations that are significantly underrepresented as compared to the probability of observing that combination based on the frequency of each annotation and a hypergeometric test (p≤0.05). Note that this calculation is only done for proteins with dual localizations. Each node is clickable and results in a list of all proteins that are found in the connected organelles.
Figure 7. Examples of multilocalizing proteins in the plasma membrane proteome. BAIAP2 is an adapter protein that links membrane bound G-proteins, which plays a role in signal transduction, to cytoplasmic effector proteins. It has been shown to localize to both the cytoplasm and the plasma membrane (detected in U2OS cells). ADD1 is a heterodimeric protein. It binds with high affinity to Calmodulin and is a substrate for protein kinases. It has been shown to localize to both the nucleus and the plasma membrane (detected in Hep-G2 cells). ARHGEF26 is a member of the Rho-guanine nucleotide exchange factor (Rho-GEF). These proteins regulate Rho GTPases by catalyzing the exchange of GDP for GTP. GTPases act as molecular switches in intracellular signaling pathways. It has been shown that ARHGEF26 localizes to the nucleus, cytoplasm and plasma membrane (detected in U-251 MG cells).
Expression levels of plasma membrane proteins in tissue
Transcriptome analysis and classification of genes into tissue distribution categories (Figure 8) shows that a significantly larger portion of the plasma membrane-associated protein-coding genes are detected in some or in many tissues, while a smaller portion are detected in all tissues, compared to all genes presented in the subcellular section. This indicates a more pronounced role for plasma membrane proteins in functions or structures specific to groups of tissues.
Figure 8. Bar plot showing the percentage of genes in different tissue distribution categories for plasma membrane-associated protein-coding genes, compared to all genes in the subcellular section. Asterisk marks a statistically significant deviation (p≤0.05) in the number of genes in a category based on a binomial statistical test. Each bar is clickable and gives a search result of proteins that belong to the selected category.
Relevant links and publications
Uhlen M et al., A proposal for validation of antibodies.Nat Methods. (2016)
PubMed: 27595404 DOI: 10.1038/nmeth.3995
Stadler C et al., Systematic validation of antibody binding and protein subcellular localization using siRNA and confocal microscopy.J Proteomics. (2012)
PubMed: 22361696 DOI: 10.1016/j.jprot.2012.01.030
Poser I et al., BAC TransgeneOmics: a high-throughput method for exploration of protein function in mammals.Nat Methods. (2008)
PubMed: 18391959 DOI: 10.1038/nmeth.1199
Skogs M et al., Antibody Validation in Bioimaging Applications Based on Endogenous Expression of Tagged Proteins.J Proteome Res. (2017)
PubMed: 27723985 DOI: 10.1021/acs.jproteome.6b00821
Hildreth AD et al., Single-cell sequencing of human white adipose tissue identifies new cell states in health and obesity.Nat Immunol. (2021)
PubMed: 33907320 DOI: 10.1038/s41590-021-00922-4
He S et al., Single-cell transcriptome profiling of an adult human cell atlas of 15 major organs.Genome Biol. (2020)
PubMed: 33287869 DOI: 10.1186/s13059-020-02210-0
Bhat-Nakshatri P et al., A single-cell atlas of the healthy breast tissues reveals clinically relevant clusters of breast epithelial cells.Cell Rep Med. (2021)
PubMed: 33763657 DOI: 10.1016/j.xcrm.2021.100219
Lukassen S et al., SARS-CoV-2 receptor ACE2 and TMPRSS2 are primarily expressed in bronchial transient secretory cells.EMBO J. (2020)
PubMed: 32246845 DOI: 10.15252/embj.20105114
Parikh K et al., Colonic epithelial cell diversity in health and inflammatory bowel disease.Nature. (2019)
PubMed: 30814735 DOI: 10.1038/s41586-019-0992-y
Wang W et al., Single-cell transcriptomic atlas of the human endometrium during the menstrual cycle.Nat Med. (2020)
PubMed: 32929266 DOI: 10.1038/s41591-020-1040-z
Menon M et al., Single-cell transcriptomic atlas of the human retina identifies cell types associated with age-related macular degeneration.Nat Commun. (2019)
PubMed: 31653841 DOI: 10.1038/s41467-019-12780-8
Ulrich ND et al., Cellular heterogeneity of human fallopian tubes in normal and hydrosalpinx disease states identified using scRNA-seq.Dev Cell. (2022)
PubMed: 35320732 DOI: 10.1016/j.devcel.2022.02.017
Wang L et al., Single-cell reconstruction of the adult human heart during heart failure and recovery reveals the cellular landscape underlying cardiac function.Nat Cell Biol. (2020)
PubMed: 31915373 DOI: 10.1038/s41556-019-0446-7
Liao J et al., Single-cell RNA sequencing of human kidney.Sci Data. (2020)
PubMed: 31896769 DOI: 10.1038/s41597-019-0351-8
MacParland SA et al., Single cell RNA sequencing of human liver reveals distinct intrahepatic macrophage populations.Nat Commun. (2018)
PubMed: 30348985 DOI: 10.1038/s41467-018-06318-7
Tabula Sapiens Consortium* et al., The Tabula Sapiens: A multiple-organ, single-cell transcriptomic atlas of humans.Science. (2022)
PubMed: 35549404 DOI: 10.1126/science.abl4896
Wagner M et al., Single-cell analysis of human ovarian cortex identifies distinct cell populations but no oogonial stem cells.Nat Commun. (2020)
PubMed: 32123174 DOI: 10.1038/s41467-020-14936-3
Qadir MMF et al., Single-cell resolution analysis of the human pancreatic ductal progenitor cell niche.Proc Natl Acad Sci U S A. (2020)
PubMed: 32354994 DOI: 10.1073/pnas.1918314117
Chen J et al., PBMC fixation and processing for Chromium single-cell RNA sequencing.J Transl Med. (2018)
PubMed: 30016977 DOI: 10.1186/s12967-018-1578-4
Vento-Tormo R et al., Single-cell reconstruction of the early maternal-fetal interface in humans.Nature. (2018)
PubMed: 30429548 DOI: 10.1038/s41586-018-0698-6
Wang Y et al., Single-cell transcriptome analysis reveals differential nutrient absorption functions in human intestine.J Exp Med. (2020)
PubMed: 31753849 DOI: 10.1084/jem.20191130
De Micheli AJ et al., A reference single-cell transcriptomic atlas of human skeletal muscle tissue reveals bifurcated muscle stem cell populations.Skelet Muscle. (2020)
PubMed: 32624006 DOI: 10.1186/s13395-020-00236-3
Solé-Boldo L et al., Single-cell transcriptomes of the human skin reveal age-related loss of fibroblast priming.Commun Biol. (2020)
PubMed: 32327715 DOI: 10.1038/s42003-020-0922-4
Agaton C et al., Affinity proteomics for systematic protein profiling of chromosome 21 gene products in human tissues.Mol Cell Proteomics. (2003)
PubMed: 12796447 DOI: 10.1074/mcp.M300022-MCP200
Lindskog M et al., Selection of protein epitopes for antibody productionBiotechniques (2005)
PubMed: 15945371
Larsson M et al., High-throughput protein expression of cDNA products as a tool in functional genomics.J Biotechnol. (2000)
PubMed: 10908795 DOI: 10.1016/s0168-1656(00)00258-3
Takahashi H et al., 5' end-centered expression profiling using cap-analysis gene expression and next-generation sequencing.Nat Protoc. (2012)
PubMed: 22362160 DOI: 10.1038/nprot.2012.005
Lein ES et al., Genome-wide atlas of gene expression in the adult mouse brain.Nature. (2007)
PubMed: 17151600 DOI: 10.1038/nature05453
Kircher M et al., Double indexing overcomes inaccuracies in multiplex sequencing on the Illumina platform.Nucleic Acids Res. (2012)
PubMed: 22021376 DOI: 10.1093/nar/gkr771
Uhlen M et al., A genome-wide transcriptomic analysis of protein-coding genes in human blood cells.Science. (2019)
PubMed: 31857451 DOI: 10.1126/science.aax9198
Fagerberg L et al., Prediction of the human membrane proteome.Proteomics. (2010)
PubMed: 20175080 DOI: 10.1002/pmic.200900258
Zhong W et al., The neuropeptide landscape of human prefrontal cortex.Proc Natl Acad Sci U S A. (2022)
PubMed: 35947618 DOI: 10.1073/pnas.2123146119
Sjöstedt E et al., An atlas of the protein-coding genes in the human, pig, and mouse brain.Science. (2020)
PubMed: 32139519 DOI: 10.1126/science.aay5947
Gilvesy A et al., Spatiotemporal characterization of cellular tau pathology in the human locus coeruleus-pericoerulear complex by three-dimensional imaging.Acta Neuropathol. (2022)
PubMed: 36040521 DOI: 10.1007/s00401-022-02477-6
Jin H et al., Systematic transcriptional analysis of human cell lines for gene expression landscape and tumor representation.Nat Commun. (2023)
PubMed: 37669926 DOI: 10.1038/s41467-023-41132-w
Schubert M et al., Perturbation-response genes reveal signaling footprints in cancer gene expression.Nat Commun. (2018)
PubMed: 29295995 DOI: 10.1038/s41467-017-02391-6
Jiang P et al., Systematic investigation of cytokine signaling activity at the tissue and single-cell levels.Nat Methods. (2021)
PubMed: 34594031 DOI: 10.1038/s41592-021-01274-5
Jin L et al., Targeting of CD44 eradicates human acute myeloid leukemic stem cells.Nat Med. (2006)
PubMed: 16998484 DOI: 10.1038/nm1483
Magis AT et al., Untargeted longitudinal analysis of a wellness cohort identifies markers of metastatic cancer years prior to diagnosis.Sci Rep. (2020)
PubMed: 33004987 DOI: 10.1038/s41598-020-73451-z
Santarius T et al., GLO1-A novel amplified gene in human cancer.Genes Chromosomes Cancer. (2010)
PubMed: 20544845 DOI: 10.1002/gcc.20784
Berggrund M et al., Identification of Candidate Plasma Protein Biomarkers for Cervical Cancer Using the Multiplex Proximity Extension Assay.Mol Cell Proteomics. (2019)
PubMed: 30692274 DOI: 10.1074/mcp.RA118.001208
Virgilio L et al., Deregulated expression of TCL1 causes T cell leukemia in mice.Proc Natl Acad Sci U S A. (1998)
PubMed: 9520462 DOI: 10.1073/pnas.95.7.3885
Saberi Hosnijeh F et al., Proteomic markers with prognostic impact on outcome of chronic lymphocytic leukemia patients under chemo-immunotherapy: results from the HOVON 109 study.Exp Hematol. (2020)
PubMed: 32781097 DOI: 10.1016/j.exphem.2020.08.002
Gao L et al., Integrative analysis the characterization of peroxiredoxins in pan-cancer.Cancer Cell Int. (2021)
PubMed: 34246267 DOI: 10.1186/s12935-021-02064-x
Satelli A et al., Galectin-4 functions as a tumor suppressor of human colorectal cancer.Int J Cancer. (2011)
PubMed: 21064109 DOI: 10.1002/ijc.25750
Harlid S et al., A two-tiered targeted proteomics approach to identify pre-diagnostic biomarkers of colorectal cancer risk.Sci Rep. (2021)
PubMed: 33664295 DOI: 10.1038/s41598-021-83968-6
Sun X et al., Prospective Proteomic Study Identifies Potential Circulating Protein Biomarkers for Colorectal Cancer Risk.Cancers (Basel). (2022)
PubMed: 35805033 DOI: 10.3390/cancers14133261
Bhardwaj M et al., Comparison of Proteomic Technologies for Blood-Based Detection of Colorectal Cancer.Int J Mol Sci. (2021)
PubMed: 33530402 DOI: 10.3390/ijms22031189
Chen H et al., Head-to-Head Comparison and Evaluation of 92 Plasma Protein Biomarkers for Early Detection of Colorectal Cancer in a True Screening Setting.Clin Cancer Res. (2015)
PubMed: 26015516 DOI: 10.1158/1078-0432.CCR-14-3051
Thorsen SB et al., Detection of serological biomarkers by proximity extension assay for detection of colorectal neoplasias in symptomatic individuals.J Transl Med. (2013)
PubMed: 24107468 DOI: 10.1186/1479-5876-11-253
Mahboob S et al., A novel multiplexed immunoassay identifies CEA, IL-8 and prolactin as prospective markers for Dukes' stages A-D colorectal cancers.Clin Proteomics. (2015)
PubMed: 25987887 DOI: 10.1186/s12014-015-9081-x
He W et al., Attenuation of TNFSF10/TRAIL-induced apoptosis by an autophagic survival pathway involving TRAF2- and RIPK1/RIP1-mediated MAPK8/JNK activation.Autophagy. (2012)
PubMed: 23051914 DOI: 10.4161/auto.22145
Enroth S et al., A two-step strategy for identification of plasma protein biomarkers for endometrial and ovarian cancer.Clin Proteomics. (2018)
PubMed: 30519148 DOI: 10.1186/s12014-018-9216-y
Jung CS et al., Serum GFAP is a diagnostic marker for glioblastoma multiforme.Brain. (2007)
PubMed: 17998256 DOI: 10.1093/brain/awm263
Jaworski DM et al., BEHAB (brain enriched hyaluronan binding) is expressed in surgical samples of glioma and in intracranial grafts of invasive glioma cell lines.Cancer Res. (1996)
PubMed: 8625302
Zhang X et al., CEACAM5 stimulates the progression of non-small-cell lung cancer by promoting cell proliferation and migration.J Int Med Res. (2020)
PubMed: 32993395 DOI: 10.1177/0300060520959478
Xu F et al., A Linear Discriminant Analysis Model Based on the Changes of 7 Proteins in Plasma Predicts Response to Anlotinib Therapy in Advanced Non-Small Cell Lung Cancer Patients.Front Oncol. (2021)
PubMed: 35070967 DOI: 10.3389/fonc.2021.756902
Dagnino S et al., Prospective Identification of Elevated Circulating CDCP1 in Patients Years before Onset of Lung Cancer.Cancer Res. (2021)
PubMed: 33574093 DOI: 10.1158/0008-5472.CAN-20-3454
Álvez MB et al., Next generation pan-cancer blood proteome profiling using proximity extension assay.Nat Commun. (2023)
PubMed: 37463882 DOI: 10.1038/s41467-023-39765-y
Wik L et al., Proximity Extension Assay in Combination with Next-Generation Sequencing for High-throughput Proteome-wide Analysis.Mol Cell Proteomics. (2021)
PubMed: 34715355 DOI: 10.1016/j.mcpro.2021.100168
Zeiler M et al., A Protein Epitope Signature Tag (PrEST) library allows SILAC-based absolute quantification and multiplexed determination of protein copy numbers in cell lines.Mol Cell Proteomics. (2012)
PubMed: 21964433 DOI: 10.1074/mcp.O111.009613
Peng Y et al., Identification of key biomarkers associated with cell adhesion in multiple myeloma by integrated bioinformatics analysis.Cancer Cell Int. (2020)
PubMed: 32581652 DOI: 10.1186/s12935-020-01355-z
Gyllensten U et al., Next Generation Plasma Proteomics Identifies High-Precision Biomarker Candidates for Ovarian Cancer.Cancers (Basel). (2022)
PubMed: 35406529 DOI: 10.3390/cancers14071757
Enroth S et al., High throughput proteomics identifies a high-accuracy 11 plasma protein biomarker signature for ovarian cancer.Commun Biol. (2019)
PubMed: 31240259 DOI: 10.1038/s42003-019-0464-9
Wang Z et al., DNER promotes epithelial-mesenchymal transition and prevents chemosensitivity through the Wnt/β-catenin pathway in breast cancer.Cell Death Dis. (2020)
PubMed: 32811806 DOI: 10.1038/s41419-020-02903-1
Liu S et al., Discovery of CASP8 as a potential biomarker for high-risk prostate cancer through a high-multiplex immunoassay.Sci Rep. (2021)
PubMed: 33828176 DOI: 10.1038/s41598-021-87155-5
Orchard S et al., The MIntAct project--IntAct as a common curation platform for 11 molecular interaction databases.Nucleic Acids Res. (2014)
PubMed: 24234451 DOI: 10.1093/nar/gkt1115
Uhlen M et al., A pathology atlas of the human cancer transcriptome.Science. (2017)
PubMed: 28818916 DOI: 10.1126/science.aan2507
Hikmet F et al., The protein expression profile of ACE2 in human tissues.Mol Syst Biol. (2020)
PubMed: 32715618 DOI: 10.15252/msb.20209610
Gordon DE et al., A SARS-CoV-2 protein interaction map reveals targets for drug repurposing.Nature. (2020)
PubMed: 32353859 DOI: 10.1038/s41586-020-2286-9
Karlsson M et al., A single-cell type transcriptomics map of human tissues.Sci Adv. (2021)
PubMed: 34321199 DOI: 10.1126/sciadv.abh2169
Jumper J et al., Highly accurate protein structure prediction with AlphaFold.Nature. (2021)
PubMed: 34265844 DOI: 10.1038/s41586-021-03819-2
Varadi M et al., AlphaFold Protein Structure Database: massively expanding the structural coverage of protein-sequence space with high-accuracy models.Nucleic Acids Res. (2022)
PubMed: 34791371 DOI: 10.1093/nar/gkab1061
Pollard TD et al., Actin, a central player in cell shape and movement.Science. (2009)
PubMed: 19965462 DOI: 10.1126/science.1175862
Mitchison TJ et al., Actin-based cell motility and cell locomotion.Cell. (1996)
PubMed: 8608590
dos Remedios CG et al., Actin binding proteins: regulation of cytoskeletal microfilaments.Physiol Rev. (2003)
PubMed: 12663865 DOI: 10.1152/physrev.00026.2002
Campellone KG et al., A nucleator arms race: cellular control of actin assembly.Nat Rev Mol Cell Biol. (2010)
PubMed: 20237478 DOI: 10.1038/nrm2867
Rottner K et al., Actin assembly mechanisms at a glance.J Cell Sci. (2017)
PubMed: 29032357 DOI: 10.1242/jcs.206433
Bird RP., Observation and quantification of aberrant crypts in the murine colon treated with a colon carcinogen: preliminary findings.Cancer Lett. (1987)
PubMed: 3677050 DOI: 10.1016/0304-3835(87)90157-1
HUXLEY AF et al., Structural changes in muscle during contraction; interference microscopy of living muscle fibres.Nature. (1954)
PubMed: 13165697
HUXLEY H et al., Changes in the cross-striations of muscle during contraction and stretch and their structural interpretation.Nature. (1954)
PubMed: 13165698
Svitkina T., The Actin Cytoskeleton and Actin-Based Motility.Cold Spring Harb Perspect Biol. (2018)
PubMed: 29295889 DOI: 10.1101/cshperspect.a018267
Malumbres M et al., Cell cycle, CDKs and cancer: a changing paradigm.Nat Rev Cancer. (2009)
PubMed: 19238148 DOI: 10.1038/nrc2602
Massagué J., G1 cell-cycle control and cancer.Nature. (2004)
PubMed: 15549091 DOI: 10.1038/nature03094
Hartwell LH et al., Cell cycle control and cancer.Science. (1994)
PubMed: 7997877 DOI: 10.1126/science.7997877
Cho RJ et al., Transcriptional regulation and function during the human cell cycle.Nat Genet. (2001)
PubMed: 11137997 DOI: 10.1038/83751
Whitfield ML et al., Identification of genes periodically expressed in the human cell cycle and their expression in tumors.Mol Biol Cell. (2002)
PubMed: 12058064 DOI: 10.1091/mbc.02-02-0030.
Boström J et al., Comparative cell cycle transcriptomics reveals synchronization of developmental transcription factor networks in cancer cells.PLoS One. (2017)
PubMed: 29228002 DOI: 10.1371/journal.pone.0188772
Lane KR et al., Cell cycle-regulated protein abundance changes in synchronously proliferating HeLa cells include regulation of pre-mRNA splicing proteins.PLoS One. (2013)
PubMed: 23520512 DOI: 10.1371/journal.pone.0058456
Ohta S et al., The protein composition of mitotic chromosomes determined using multiclassifier combinatorial proteomics.Cell. (2010)
PubMed: 20813266 DOI: 10.1016/j.cell.2010.07.047
Ly T et al., A proteomic chronology of gene expression through the cell cycle in human myeloid leukemia cells.Elife. (2014)
PubMed: 24596151 DOI: 10.7554/eLife.01630
Pagliuca FW et al., Quantitative proteomics reveals the basis for the biochemical specificity of the cell-cycle machinery.Mol Cell. (2011)
PubMed: 21816347 DOI: 10.1016/j.molcel.2011.05.031
Ly T et al., Proteomic analysis of the response to cell cycle arrests in human myeloid leukemia cells.Elife. (2015)
PubMed: 25555159 DOI: 10.7554/eLife.04534
Mahdessian D et al., Spatiotemporal dissection of the cell cycle with single-cell proteogenomics.Nature. (2021)
PubMed: 33627808 DOI: 10.1038/s41586-021-03232-9
Dueck H et al., Variation is function: Are single cell differences functionally important?: Testing the hypothesis that single cell variation is required for aggregate function.Bioessays. (2016)
PubMed: 26625861 DOI: 10.1002/bies.201500124
Snijder B et al., Origins of regulated cell-to-cell variability.Nat Rev Mol Cell Biol. (2011)
PubMed: 21224886 DOI: 10.1038/nrm3044
Cooper S et al., Membrane-elution analysis of content of cyclins A, B1, and E during the unperturbed mammalian cell cycle.Cell Div. (2007)
PubMed: 17892542 DOI: 10.1186/1747-1028-2-28
Davis PK et al., Biological methods for cell-cycle synchronization of mammalian cells.Biotechniques. (2001)
PubMed: 11414226 DOI: 10.2144/01306rv01
Domenighetti G et al., Effect of information campaign by the mass media on hysterectomy rates.Lancet. (1988)
PubMed: 2904581 DOI: 10.1016/s0140-6736(88)90943-9
Scialdone A et al., Computational assignment of cell-cycle stage from single-cell transcriptome data.Methods. (2015)
PubMed: 26142758 DOI: 10.1016/j.ymeth.2015.06.021
Sakaue-Sawano A et al., Visualizing spatiotemporal dynamics of multicellular cell-cycle progression.Cell. (2008)
PubMed: 18267078 DOI: 10.1016/j.cell.2007.12.033
Grant GD et al., Identification of cell cycle-regulated genes periodically expressed in U2OS cells and their regulation by FOXM1 and E2F transcription factors.Mol Biol Cell. (2013)
PubMed: 24109597 DOI: 10.1091/mbc.E13-05-0264
Semple JW et al., An essential role for Orc6 in DNA replication through maintenance of pre-replicative complexes.EMBO J. (2006)
PubMed: 17053779 DOI: 10.1038/sj.emboj.7601391
Nigg EA et al., The centrosome cycle: Centriole biogenesis, duplication and inherent asymmetries.Nat Cell Biol. (2011)
PubMed: 21968988 DOI: 10.1038/ncb2345
Conduit PT et al., Centrosome function and assembly in animal cells.Nat Rev Mol Cell Biol. (2015)
PubMed: 26373263 DOI: 10.1038/nrm4062
Tollenaere MA et al., Centriolar satellites: key mediators of centrosome functions.Cell Mol Life Sci. (2015)
PubMed: 25173771 DOI: 10.1007/s00018-014-1711-3
Prosser SL et al., Centriolar satellite biogenesis and function in vertebrate cells.J Cell Sci. (2020)
PubMed: 31896603 DOI: 10.1242/jcs.239566
Rieder CL et al., The centrosome in vertebrates: more than a microtubule-organizing center.Trends Cell Biol. (2001)
PubMed: 11567874
Badano JL et al., The centrosome in human genetic disease.Nat Rev Genet. (2005)
PubMed: 15738963 DOI: 10.1038/nrg1557
Clegg JS., Properties and metabolism of the aqueous cytoplasm and its boundaries.Am J Physiol. (1984)
PubMed: 6364846
Luby-Phelps K., The physical chemistry of cytoplasm and its influence on cell function: an update.Mol Biol Cell. (2013)
PubMed: 23989722 DOI: 10.1091/mbc.E12-08-0617
Luby-Phelps K., Cytoarchitecture and physical properties of cytoplasm: volume, viscosity, diffusion, intracellular surface area.Int Rev Cytol. (2000)
PubMed: 10553280
Bright GR et al., Fluorescence ratio imaging microscopy: temporal and spatial measurements of cytoplasmic pH.J Cell Biol. (1987)
PubMed: 3558476
Kopito RR., Aggresomes, inclusion bodies and protein aggregation.Trends Cell Biol. (2000)
PubMed: 11121744
Aizer A et al., Intracellular trafficking and dynamics of P bodies.Prion. (2008)
PubMed: 19242093
Carcamo WC et al., Molecular cell biology and immunobiology of mammalian rod/ring structures.Int Rev Cell Mol Biol. (2014)
PubMed: 24411169 DOI: 10.1016/B978-0-12-800097-7.00002-6
Lang F., Mechanisms and significance of cell volume regulation.J Am Coll Nutr. (2007)
PubMed: 17921474
Becht E et al., Dimensionality reduction for visualizing single-cell data using UMAP.Nat Biotechnol. (2018)
PubMed: 30531897 DOI: 10.1038/nbt.4314
Schwarz DS et al., The endoplasmic reticulum: structure, function and response to cellular signaling.Cell Mol Life Sci. (2016)
PubMed: 26433683 DOI: 10.1007/s00018-015-2052-6
Friedman JR et al., The ER in 3D: a multifunctional dynamic membrane network.Trends Cell Biol. (2011)
PubMed: 21900009 DOI: 10.1016/j.tcb.2011.07.004
Travers KJ et al., Functional and genomic analyses reveal an essential coordination between the unfolded protein response and ER-associated degradation.Cell. (2000)
PubMed: 10847680
Roussel BD et al., Endoplasmic reticulum dysfunction in neurological disease.Lancet Neurol. (2013)
PubMed: 23237905 DOI: 10.1016/S1474-4422(12)70238-7
Neve EP et al., Cytochrome P450 proteins: retention and distribution from the endoplasmic reticulum.Curr Opin Drug Discov Devel. (2010)
PubMed: 20047148
Kulkarni-Gosavi P et al., Form and function of the Golgi apparatus: scaffolds, cytoskeleton and signalling.FEBS Lett. (2019)
PubMed: 31378930 DOI: 10.1002/1873-3468.13567
Wilson C et al., The Golgi apparatus: an organelle with multiple complex functions.Biochem J. (2011)
PubMed: 21158737 DOI: 10.1042/BJ20101058
Farquhar MG et al., The Golgi apparatus: 100 years of progress and controversy.Trends Cell Biol. (1998)
PubMed: 9695800
Brandizzi F et al., Organization of the ER-Golgi interface for membrane traffic control.Nat Rev Mol Cell Biol. (2013)
PubMed: 23698585 DOI: 10.1038/nrm3588
Potelle S et al., Golgi post-translational modifications and associated diseases.J Inherit Metab Dis. (2015)
PubMed: 25967285 DOI: 10.1007/s10545-015-9851-7
Leduc C et al., Intermediate filaments in cell migration and invasion: the unusual suspects.Curr Opin Cell Biol. (2015)
PubMed: 25660489 DOI: 10.1016/j.ceb.2015.01.005
Lowery J et al., Intermediate Filaments Play a Pivotal Role in Regulating Cell Architecture and Function.J Biol Chem. (2015)
PubMed: 25957409 DOI: 10.1074/jbc.R115.640359
Robert A et al., Intermediate filament dynamics: What we can see now and why it matters.Bioessays. (2016)
PubMed: 26763143 DOI: 10.1002/bies.201500142
Fuchs E et al., Intermediate filaments: structure, dynamics, function, and disease.Annu Rev Biochem. (1994)
PubMed: 7979242 DOI: 10.1146/annurev.bi.63.070194.002021
Janmey PA et al., Viscoelastic properties of vimentin compared with other filamentous biopolymer networks.J Cell Biol. (1991)
PubMed: 2007620
Köster S et al., Intermediate filament mechanics in vitro and in the cell: from coiled coils to filaments, fibers and networks.Curr Opin Cell Biol. (2015)
PubMed: 25621895 DOI: 10.1016/j.ceb.2015.01.001
Herrmann H et al., Intermediate filaments: from cell architecture to nanomechanics.Nat Rev Mol Cell Biol. (2007)
PubMed: 17551517 DOI: 10.1038/nrm2197
Gauster M et al., Keratins in the human trophoblast.Histol Histopathol. (2013)
PubMed: 23450430 DOI: 10.14670/HH-28.817
Ouyang W et al., Analysis of the Human Protein Atlas Image Classification competition.Nat Methods. (2019)
PubMed: 31780840 DOI: 10.1038/s41592-019-0658-6
Janke C., The tubulin code: molecular components, readout mechanisms, and functions.J Cell Biol. (2014)
PubMed: 25135932 DOI: 10.1083/jcb.201406055
Goodson HV et al., Microtubules and Microtubule-Associated Proteins.Cold Spring Harb Perspect Biol. (2018)
PubMed: 29858272 DOI: 10.1101/cshperspect.a022608
Wade RH., On and around microtubules: an overview.Mol Biotechnol. (2009)
PubMed: 19565362 DOI: 10.1007/s12033-009-9193-5
Conde C et al., Microtubule assembly, organization and dynamics in axons and dendrites.Nat Rev Neurosci. (2009)
PubMed: 19377501 DOI: 10.1038/nrn2631
Wloga D et al., Post-translational modifications of microtubules.J Cell Sci. (2010)
PubMed: 20930140 DOI: 10.1242/jcs.063727
Schmoranzer J et al., Role of microtubules in fusion of post-Golgi vesicles to the plasma membrane.Mol Biol Cell. (2003)
PubMed: 12686609 DOI: 10.1091/mbc.E02-08-0500
Skop AR et al., Dissection of the mammalian midbody proteome reveals conserved cytokinesis mechanisms.Science. (2004)
PubMed: 15166316 DOI: 10.1126/science.1097931
Waters AM et al., Ciliopathies: an expanding disease spectrum.Pediatr Nephrol. (2011)
PubMed: 21210154 DOI: 10.1007/s00467-010-1731-7
Matamoros AJ et al., Microtubules in health and degenerative disease of the nervous system.Brain Res Bull. (2016)
PubMed: 27365230 DOI: 10.1016/j.brainresbull.2016.06.016
Jordan MA et al., Microtubules as a target for anticancer drugs.Nat Rev Cancer. (2004)
PubMed: 15057285 DOI: 10.1038/nrc1317
McBride HM et al., Mitochondria: more than just a powerhouse.Curr Biol. (2006)
PubMed: 16860735 DOI: 10.1016/j.cub.2006.06.054
Schaefer AM et al., The epidemiology of mitochondrial disorders--past, present and future.Biochim Biophys Acta. (2004)
PubMed: 15576042 DOI: 10.1016/j.bbabio.2004.09.005
Lange A et al., Classical nuclear localization signals: definition, function, and interaction with importin alpha.J Biol Chem. (2007)
PubMed: 17170104 DOI: 10.1074/jbc.R600026200
Ashmarina LI et al., 3-Hydroxy-3-methylglutaryl coenzyme A lyase: targeting and processing in peroxisomes and mitochondria.J Lipid Res. (1999)
PubMed: 9869651
Wang SC et al., Nuclear translocation of the epidermal growth factor receptor family membrane tyrosine kinase receptors.Clin Cancer Res. (2009)
PubMed: 19861462 DOI: 10.1158/1078-0432.CCR-08-2813
Pancholi V., Multifunctional alpha-enolase: its role in diseases.Cell Mol Life Sci. (2001)
PubMed: 11497239 DOI: 10.1007/pl00000910
Chapple CE et al., Extreme multifunctional proteins identified from a human protein interaction network.Nat Commun. (2015)
PubMed: 26054620 DOI: 10.1038/ncomms8412
Dechat T et al., Nuclear lamins: major factors in the structural organization and function of the nucleus and chromatin.Genes Dev. (2008)
PubMed: 18381888 DOI: 10.1101/gad.1652708
Gruenbaum Y et al., The nuclear lamina comes of age.Nat Rev Mol Cell Biol. (2005)
PubMed: 15688064 DOI: 10.1038/nrm1550
Stuurman N et al., Nuclear lamins: their structure, assembly, and interactions.J Struct Biol. (1998)
PubMed: 9724605 DOI: 10.1006/jsbi.1998.3987
Paine PL et al., Nuclear envelope permeability.Nature. (1975)
PubMed: 1117994
Reichelt R et al., Correlation between structure and mass distribution of the nuclear pore complex and of distinct pore complex components.J Cell Biol. (1990)
PubMed: 2324201
CALLAN HG et al., Experimental studies on amphibian oocyte nuclei. I. Investigation of the structure of the nuclear membrane by means of the electron microscope.Proc R Soc Lond B Biol Sci. (1950)
PubMed: 14786306
WATSON ML., The nuclear envelope; its structure and relation to cytoplasmic membranes.J Biophys Biochem Cytol. (1955)
PubMed: 13242591
BAHR GF et al., The fine structure of the nuclear membrane in the larval salivary gland and midgut of Chironomus.Exp Cell Res. (1954)
PubMed: 13173504
Terasaki M et al., A new model for nuclear envelope breakdown.Mol Biol Cell. (2001)
PubMed: 11179431
Dultz E et al., Systematic kinetic analysis of mitotic dis- and reassembly of the nuclear pore in living cells.J Cell Biol. (2008)
PubMed: 18316408 DOI: 10.1083/jcb.200707026
Salina D et al., Cytoplasmic dynein as a facilitator of nuclear envelope breakdown.Cell. (2002)
PubMed: 11792324
Beaudouin J et al., Nuclear envelope breakdown proceeds by microtubule-induced tearing of the lamina.Cell. (2002)
PubMed: 11792323
Gerace L et al., The nuclear envelope lamina is reversibly depolymerized during mitosis.Cell. (1980)
PubMed: 7357605
Ellenberg J et al., Nuclear membrane dynamics and reassembly in living cells: targeting of an inner nuclear membrane protein in interphase and mitosis.J Cell Biol. (1997)
PubMed: 9298976
Yang L et al., Integral membrane proteins of the nuclear envelope are dispersed throughout the endoplasmic reticulum during mitosis.J Cell Biol. (1997)
PubMed: 9182656
Bione S et al., Identification of a novel X-linked gene responsible for Emery-Dreifuss muscular dystrophy.Nat Genet. (1994)
PubMed: 7894480 DOI: 10.1038/ng1294-323
Boisvert FM et al., The multifunctional nucleolus.Nat Rev Mol Cell Biol. (2007)
PubMed: 17519961 DOI: 10.1038/nrm2184
Németh A et al., Genome organization in and around the nucleolus.Trends Genet. (2011)
PubMed: 21295884 DOI: 10.1016/j.tig.2011.01.002
Cuylen S et al., Ki-67 acts as a biological surfactant to disperse mitotic chromosomes.Nature. (2016)
PubMed: 27362226 DOI: 10.1038/nature18610
Stenström L et al., Mapping the nucleolar proteome reveals a spatiotemporal organization related to intrinsic protein disorder.Mol Syst Biol. (2020)
PubMed: 32744794 DOI: 10.15252/msb.20209469
Visintin R et al., The nucleolus: the magician's hat for cell cycle tricks.Curr Opin Cell Biol. (2000)
PubMed: 10801456
Marciniak RA et al., Nucleolar localization of the Werner syndrome protein in human cells.Proc Natl Acad Sci U S A. (1998)
PubMed: 9618508
Tamanini F et al., The fragile X-related proteins FXR1P and FXR2P contain a functional nucleolar-targeting signal equivalent to the HIV-1 regulatory proteins.Hum Mol Genet. (2000)
PubMed: 10888599
Willemsen R et al., Association of FMRP with ribosomal precursor particles in the nucleolus.Biochem Biophys Res Commun. (1996)
PubMed: 8769090 DOI: 10.1006/bbrc.1996.1126
Isaac C et al., Characterization of the nucleolar gene product, treacle, in Treacher Collins syndrome.Mol Biol Cell. (2000)
PubMed: 10982400
Drygin D et al., The RNA polymerase I transcription machinery: an emerging target for the treatment of cancer.Annu Rev Pharmacol Toxicol. (2010)
PubMed: 20055700 DOI: 10.1146/annurev.pharmtox.010909.105844
Lamond AI et al., Structure and function in the nucleus.Science. (1998)
PubMed: 9554838
SWIFT H., Studies on nuclear fine structure.Brookhaven Symp Biol. (1959)
PubMed: 13836127
Lamond AI et al., Nuclear speckles: a model for nuclear organelles.Nat Rev Mol Cell Biol. (2003)
PubMed: 12923522 DOI: 10.1038/nrm1172
Thiry M., The interchromatin granules.Histol Histopathol. (1995)
PubMed: 8573995
Sleeman JE et al., Newly assembled snRNPs associate with coiled bodies before speckles, suggesting a nuclear snRNP maturation pathway.Curr Biol. (1999)
PubMed: 10531003
Darzacq X et al., Cajal body-specific small nuclear RNAs: a novel class of 2'-O-methylation and pseudouridylation guide RNAs.EMBO J. (2002)
PubMed: 12032087 DOI: 10.1093/emboj/21.11.2746
Jády BE et al., Modification of Sm small nuclear RNAs occurs in the nucleoplasmic Cajal body following import from the cytoplasm.EMBO J. (2003)
PubMed: 12682020 DOI: 10.1093/emboj/cdg187
Liu Q et al., A novel nuclear structure containing the survival of motor neurons protein.EMBO J. (1996)
PubMed: 8670859
Lefebvre S et al., Identification and characterization of a spinal muscular atrophy-determining gene.Cell. (1995)
PubMed: 7813012
Fischer U et al., The SMN-SIP1 complex has an essential role in spliceosomal snRNP biogenesis.Cell. (1997)
PubMed: 9323130
Lallemand-Breitenbach V et al., PML nuclear bodies.Cold Spring Harb Perspect Biol. (2010)
PubMed: 20452955 DOI: 10.1101/cshperspect.a000661
Booth DG et al., Ki-67 and the Chromosome Periphery Compartment in Mitosis.Trends Cell Biol. (2017)
PubMed: 28838621 DOI: 10.1016/j.tcb.2017.08.001
Melcák I et al., Nuclear pre-mRNA compartmentalization: trafficking of released transcripts to splicing factor reservoirs.Mol Biol Cell. (2000)
PubMed: 10679009
Spector DL et al., Associations between distinct pre-mRNA splicing components and the cell nucleus.EMBO J. (1991)
PubMed: 1833187
Misteli T et al., Protein phosphorylation and the nuclear organization of pre-mRNA splicing.Trends Cell Biol. (1997)
PubMed: 17708924 DOI: 10.1016/S0962-8924(96)20043-1
Cmarko D et al., Ultrastructural analysis of transcription and splicing in the cell nucleus after bromo-UTP microinjection.Mol Biol Cell. (1999)
PubMed: 9880337
Booth DG et al., Ki-67 is a PP1-interacting protein that organises the mitotic chromosome periphery.Elife. (2014)
PubMed: 24867636 DOI: 10.7554/eLife.01641
Kau TR et al., Nuclear transport and cancer: from mechanism to intervention.Nat Rev Cancer. (2004)
PubMed: 14732865 DOI: 10.1038/nrc1274
Laurila K et al., Prediction of disease-related mutations affecting protein localization.BMC Genomics. (2009)
PubMed: 19309509 DOI: 10.1186/1471-2164-10-122
Park S et al., Protein localization as a principal feature of the etiology and comorbidity of genetic diseases.Mol Syst Biol. (2011)
PubMed: 21613983 DOI: 10.1038/msb.2011.29
Christoforou A et al., A draft map of the mouse pluripotent stem cell spatial proteome.Nat Commun. (2016)
PubMed: 26754106 DOI: 10.1038/ncomms9992
Itzhak DN et al., Global, quantitative and dynamic mapping of protein subcellular localization.Elife. (2016)
PubMed: 27278775 DOI: 10.7554/eLife.16950
Roux KJ et al., A promiscuous biotin ligase fusion protein identifies proximal and interacting proteins in mammalian cells.J Cell Biol. (2012)
PubMed: 22412018 DOI: 10.1083/jcb.201112098
Lee SY et al., APEX Fingerprinting Reveals the Subcellular Localization of Proteins of Interest.Cell Rep. (2016)
PubMed: 27184847 DOI: 10.1016/j.celrep.2016.04.064
Huh WK et al., Global analysis of protein localization in budding yeast.Nature. (2003)
PubMed: 14562095 DOI: 10.1038/nature02026
Simpson JC et al., Systematic subcellular localization of novel proteins identified by large-scale cDNA sequencing.EMBO Rep. (2000)
PubMed: 11256614 DOI: 10.1093/embo-reports/kvd058
Stadler C et al., Immunofluorescence and fluorescent-protein tagging show high correlation for protein localization in mammalian cells.Nat Methods. 2013 Apr;10(4):315-23 (2013)
PubMed: 23435261 DOI: 10.1038/nmeth.2377
Barbe L et al., Toward a confocal subcellular atlas of the human proteome.Mol Cell Proteomics. (2008)
PubMed: 18029348 DOI: 10.1074/mcp.M700325-MCP200
Stadler C et al., A single fixation protocol for proteome-wide immunofluorescence localization studies.J Proteomics. (2010)
PubMed: 19896565 DOI: 10.1016/j.jprot.2009.10.012
Fagerberg L et al., Mapping the subcellular protein distribution in three human cell lines.J Proteome Res. (2011)
PubMed: 21675716 DOI: 10.1021/pr200379a
Baker M., Reproducibility crisis: Blame it on the antibodies.Nature. (2015)
PubMed: 25993940 DOI: 10.1038/521274a
Jacobson K et al., The Lateral Organization and Mobility of Plasma Membrane Components.Cell. (2019)
PubMed: 31051105 DOI: 10.1016/j.cell.2019.04.018
Krapf D., Compartmentalization of the plasma membrane.Curr Opin Cell Biol. (2018)
PubMed: 29656224 DOI: 10.1016/j.ceb.2018.04.002
Garcia MA et al., Cell-Cell Junctions Organize Structural and Signaling Networks.Cold Spring Harb Perspect Biol. (2018)
PubMed: 28600395 DOI: 10.1101/cshperspect.a029181
Orlando K et al., Membrane organization and dynamics in cell polarity.Cold Spring Harb Perspect Biol. (2009)
PubMed: 20066116 DOI: 10.1101/cshperspect.a001321
Eaton RC et al., D2 receptors in the paraventricular nucleus regulate genital responses and copulation in male rats.Pharmacol Biochem Behav. (1991)
PubMed: 1833780 DOI: 10.1016/0091-3057(91)90418-2
Simons K et al., Cholesterol, lipid rafts, and disease.J Clin Invest. (2002)
PubMed: 12208858 DOI: 10.1172/JCI16390
Alberts B et al, 2002. Molecular Biology of the Cell. 4th edition. New York: Garland Science.