We use cookies to enhance the usability of our website. If you continue, we'll assume that you are happy to receive all cookies. More information. Don't show this again.
General description of the gene and the encoded protein(s) using information from HGNC and Ensembl, as well as predictions made by the Human Protein Atlas project.
Gene namei
Official gene symbol, which is typically a short form of the gene name, according to HGNC.
Assigned HPA protein class(es) for the encoded protein(s).
Metabolic proteins Transporters
Predicted locationi
All transcripts of all genes have been analyzed regarding the location(s) of corresponding protein based on prediction methods for signal peptides and transmembrane regions.
Genes with at least one transcript predicted to encode a secreted protein, according to prediction methods or to UniProt location data, have been further annotated and classified with the aim to determine if the corresponding protein(s) are secreted or actually retained in intracellular locations or membrane-attached.
Remaining genes, with no transcript predicted to encode a secreted protein, will be assigned the prediction-based location(s).
The annotated location overrules the predicted location, so that a gene encoding a predicted secreted protein that has been annotated as intracellular will have intracellular as the final location.
Gene information from Ensembl and Entrez, as well as links to available gene identifiers are displayed here. Information was retrieved from Ensembl if not indicated otherwise.
Chromosome
8
Cytoband
q11.23
Chromosome location (bp)
53715543 - 53843558
Number of transcriptsi
Number of protein-coding transcripts from the gene as defined by Ensembl.
Useful information about the protein provided by UniProt.
Subunit of the V1 complex of vacuolar(H+)-ATPase (V-ATPase), a multisubunit enzyme composed of a peripheral complex (V1) that hydrolyzes ATP and a membrane integral complex (V0) that translocates protons 1. V-ATPase is responsible for acidifying and maintaining the pH of intracellular compartments and in some cell types, is targeted to the plasma membrane, where it is responsible for acidifying the extracellular environment (By similarity). Subunit H is essential for V-ATPase activity, but not for the assembly of the complex (By similarity). Involved in the endocytosis mediated by clathrin-coated pits, required for the formation of endosomes 2....show less
Biological process (UniProt)i
Keywords assigned by UniProt to proteins because they are involved in a particular biological process.
Host-virus interaction, Hydrogen ion transport, Ion transport, Transport
Gene summary (Entrez)i
Useful information about the gene from Entrez
This gene encodes a component of vacuolar ATPase (V-ATPase), a multisubunit enzyme that mediates acidification of intracellular organelles. V-ATPase-dependent organelle acidification is necessary for multiple processes including protein sorting, zymogen activation, receptor-mediated endocytosis, and synaptic vesicle proton gradient generation. The encoded protein is the regulatory H subunit of the V1 domain of V-ATPase, which is required for catalysis of ATP but not the assembly of V-ATPase. Decreased expression of this gene may play a role in the development of type 2 diabetes. Alternatively spliced transcript variants encoding multiple isoforms have been observed for this gene. [provided by RefSeq, May 2012]...show less
PROTEIN INFORMATIONi
The protein information section displays alternative protein-coding transcripts (splice variants) encoded by this gene according to the Ensembl database.
The ENSP identifier links to the Ensembl website protein summary, while the ENST identifier links to the Ensembl website transcript summary for the selected splice variant. The data in the UniProt column can be expanded to show links to all matching UniProt identifiers for this protein.
The protein classes assigned to this protein are shown if expanding the data in the protein class column. Parent protein classes are in bold font and subclasses are listed under the parent class.
The Gene Ontology terms assigned to this protein are listed if expanding the Gene ontology column. The length of the protein (amino acid residues according to Ensembl), molecular mass (kDalton), predicted signal peptide (according to a majority of the signal peptide predictors SPOCTOPUS, SignalP 4.0, and Phobius) and the number of predicted transmembrane region(s) (according to MDM) are also reported.
Q9UI12 [Direct mapping] V-type proton ATPase subunit H
Show all
A0A024R7X3 [Target identity:100%; Query identity:100%] V-type proton ATPase subunit H
Show all
Metabolic proteins Transporters Primary Active Transporters SPOCTOPUS predicted membrane proteins Predicted intracellular proteins Intracellular proteins predicted by MDM and MDSEC Mapped to neXtProt neXtProt - Evidence at protein level Protein evidence (Kim et al 2014) Protein evidence (Ezkurdia et al 2014)
Q9UI12 [Direct mapping] V-type proton ATPase subunit H
Show all
A0A024R7U9 [Target identity:100%; Query identity:100%] V-type proton ATPase subunit H
Show all
Metabolic proteins Transporters Primary Active Transporters SPOCTOPUS predicted membrane proteins Predicted intracellular proteins Intracellular proteins predicted by MDM and MDSEC Mapped to neXtProt neXtProt - Evidence at protein level Protein evidence (Kim et al 2014) Protein evidence (Ezkurdia et al 2014)
Q9UI12 [Direct mapping] V-type proton ATPase subunit H
Show all
A0A024R7U9 [Target identity:100%; Query identity:100%] V-type proton ATPase subunit H
Show all
Metabolic proteins Transporters Primary Active Transporters SPOCTOPUS predicted membrane proteins Predicted intracellular proteins Intracellular proteins predicted by MDM and MDSEC Mapped to neXtProt neXtProt - Evidence at protein level Protein evidence (Ezkurdia et al 2014)
G3V126 [Direct mapping] V-type proton ATPase subunit H
Show all
Metabolic proteins SPOCTOPUS predicted membrane proteins Predicted intracellular proteins Intracellular proteins predicted by MDM and MDSEC Protein evidence (Ezkurdia et al 2014)