We use cookies to enhance the usability of our website. If you continue, we'll assume that you are happy to receive all cookies. More information. Don't show this again.
DCAF11
SECTIONS
  • TISSUE
  • BRAIN
  • SINGLE CELL TYPE
  • TISSUE CELL TYPE
  • PATHOLOGY
  • DISEASE
  • IMMUNE CELL
  • BLOOD PROTEIN
  • SUBCELLULAR
  • CELL LINE
  • STRUCTURE
  • INTERACTION
ABOUT
  • INTRODUCTION
  • HISTORY
  • ORGANIZATION
  • PUBLICATIONS
  • ANTIBODY SUBMISSION
  • ANTIBODY AVAILABILITY
  • ACKNOWLEDGMENTS
  • CONTACT
NEWS
  • NEWS ARTICLES
  • PRESS ROOM
LEARN
  • DICTIONARY
  • PROTEIN CLASSES
  • PROTEIN EVIDENCE
  • METHODS
  • EDUCATIONAL VIDEOS
DATA
  • DOWNLOADABLE DATA
  • PUBLICATION DATA
  • RELEASE HISTORY
  • SARS-COV-2
HELP
  • ANTIBODY VALIDATION
  • ASSAYS & ANNOTATION
  • DISCLAIMER
  • HELP & FAQ
  • PRIVACY STATEMENT
  • LICENCE & CITATION
Fields »
Search result

Field
Term
Gene name
Class
Subclass
Class
Keyword
Chromosome
External id
Tissue
Cell type
Expression
Patient ID
Tissue
Category
Cluster
Reliability
Brain region
Category
Brain region
Category
Brain region
Category
Cluster
Reliability
Cell type
Category
Cluster
Tissue
Cell type
Enrichment
Cancer
Prognosis
Cancer
Category
Cell type
Category
Cell lineage
Category
Cluster
Annotation
Disease
Location
Searches
Location
Cell line
Type
Phase
Reliability
Cancer type
Category
Cluster
Interacting gene
Number of interactions
Pathway
Category
Score
Score
Score
Validation
Validation
Validation
Validation
Antibodies
Protein structure
In atlas
Column


  • SUMMARY

  • TISSUE

  • BRAIN

  • SINGLE CELL

  • TISSUE CELL

  • PATHOLOGY

  • DISEASE

  • IMMUNE

  • BLOOD

  • SUBCELL

  • CELL LINE

  • STRUCTURE

  • INTERACTION

  • DCAF11
PROTEIN STRUCTURE
ANTIBODIES
AND
VALIDATION
Protein structures
GENERAL INFORMATIONi

General description of the gene and the encoded protein(s) using information from HGNC and Ensembl, as well as predictions made by the Human Protein Atlas project.

Gene namei

Official gene symbol, which is typically a short form of the gene name, according to HGNC.

DCAF11
Synonyms GL014, PRO2389, WDR23
Gene descriptioni

Full gene name according to HGNC.

DDB1 and CUL4 associated factor 11
Predicted locationi

All transcripts of all genes have been analyzed regarding the location(s) of corresponding protein based on prediction methods for signal peptides and transmembrane regions.

  • Genes with at least one transcript predicted to encode a secreted protein, according to prediction methods or to UniProt location data, have been further annotated and classified with the aim to determine if the corresponding protein(s) are secreted or actually retained in intracellular locations or membrane-attached.

  • Remaining genes, with no transcript predicted to encode a secreted protein, will be assigned the prediction-based location(s).

The annotated location overrules the predicted location, so that a gene encoding a predicted secreted protein that has been annotated as intracellular will have intracellular as the final location.

Intracellular
Protein evidence Evidence at protein level (all genes)
GENE INFORMATIONi

Gene information from Ensembl and Entrez, as well as links to available gene identifiers are displayed here. Information was retrieved from Ensembl if not indicated otherwise.

Chromosome 14
Cytoband q12
Chromosome location (bp) 24114195 - 24125242
Number of transcriptsi

Number of protein-coding transcripts from the gene as defined by Ensembl.

22
Ensembl ENSG00000100897 (version 109)
Entrez gene 80344
HGNC HGNC:20258
UniProt Q8TEB1 (UniProt - Evidence at protein level)
neXtProt NX_Q8TEB1
GeneCards DCAF11
PROTEIN BROWSERi

The Structure section provides predicted structures from the Alphafold protein structure database and includes structures corresponding to uniprot entries mapped to our gene set with at least one splice variant having 100% identity to the structure sequence.

Displaying protein features on the AlphaFold structures

Individual splice variants can be selected in the top part of the Protein Browser (see below) and both for transcripts matching the whole structure and those corresponding only to a part the full-length AlphaFold structure is shown. Different transcript-related features such as transmembrane regions, InterPro domains and antigen sequences for antibodies can be displayed in the structure by clicking on the respective features in the Protein Browser and then also the part of the structure corresponding to the selected transcript will be shown in lightblue. Clinical and population amino acid variants can be highlighted by using the sliders to the right of the structure, which can also be used to colour the entire structure by residue index or make the structure autorotate.The structures are displayed using the NGL Viewer and can also be zoomed-in and rotated manually.

The Protein Browser

The protein browser displays the antigen location on the target protein(s) and the features of the target protein. The tabs at the top of the protein view section can be used to switch between the different splice variants to which an antigen has been mapped.

At the top of the view, the position of the antigen (identified by the corresponding HPA identifier) is shown as a green bar. A yellow triangle on the bar indicates a <100% sequence identity to the protein target.

Below the antigens, the maximum percent sequence identity of the protein to all other proteins from other human genes is displayed, using a sliding window of 10 aa residues (HsID 10) or 50 aa residues (HsID 50). The region with the lowest possible identity is always selected for antigen design, with a maximum identity of 60% allowed for designing a single-target antigen (read more).

The curve in blue displays the predicted antigenicity i.e. the tendency for different regions of the protein to generate an immune response, with peak regions being predicted to be more antigenic.The curve shows average values based on a sliding window approach using an in-house propensity scale. (read more).

If a signal peptide is predicted by a majority of the signal peptide predictors SPOCTOPUS, SignalP 4.0, and Phobius (turquoise) and/or transmembrane regions (orange) are predicted by MDM, these are displayed.

Low complexity regions are shown in yellow and InterPro regions in green. Common (purple) and unique (grey) regions between different splice variants of the gene are also displayed (read more), and at the bottom of the protein view is the protein scale.
«
DCAF11-202
DCAF11-203
DCAF11-204
DCAF11-207
DCAF11-210
DCAF11-211
DCAF11-213
DCAF11-216
DCAF11-217
DCAF11-218
DCAF11-219
DCAF11-220
DCAF11-221
DCAF11-222
DCAF11-225
DCAF11-226
DCAF11-230
DCAF11-232
DCAF11-233
DCAF11-234
DCAF11-236
DCAF11-238
»

Description:
Structure prediction of Q8TEB1 from Alphafold project, version 2

Color scheme:
Confidence
Residue index
Your selection
Variants:
Off
Clinical
Population
Autorotate:
Off
On
PROTEIN INFORMATIONi

The protein information section displays alternative protein-coding transcripts (splice variants) encoded by this gene according to the Ensembl database.

The ENSP identifier links to the Ensembl website protein summary, while the ENST identifier links to the Ensembl website transcript summary for the selected splice variant. The data in the UniProt column can be expanded to show links to all matching UniProt identifiers for this protein.

The protein classes assigned to this protein are shown if expanding the data in the protein class column. Parent protein classes are in bold font and subclasses are listed under the parent class.

The Gene Ontology terms assigned to this protein are listed if expanding the Gene ontology column. The length of the protein (amino acid residues according to Ensembl), molecular mass (kDalton), predicted signal peptide (according to a majority of the signal peptide predictors SPOCTOPUS, SignalP 4.0, and Phobius) and the number of predicted transmembrane region(s) (according to MDM) are also reported.
Splice variant SwissProt TrEMBL Protein class Length & mass Signal peptide
(predicted)
Transmembrane regions
(predicted)
DCAF11-202
Q8TEB1
Show all
Predicted intracellular proteins
Mapped to neXtProt
Protein evidence (Ezkurdia et al 2014)
Show all
446 aa
50.7 kDa
No 0
DCAF11-203
Q8TEB1
Show all
Predicted intracellular proteins
Mapped to neXtProt
Protein evidence (Kim et al 2014)
Protein evidence (Ezkurdia et al 2014)
Show all
520 aa
58.8 kDa
No 0
DCAF11-204
Q8TEB1
Show all
Predicted intracellular proteins
Mapped to neXtProt
Protein evidence (Kim et al 2014)
Protein evidence (Ezkurdia et al 2014)
Show all
546 aa
61.7 kDa
No 0
DCAF11-207
H0YL64
Show all
Predicted intracellular proteins
Protein evidence (Ezkurdia et al 2014)
Show all
122 aa
13.3 kDa
No 0
DCAF11-210
H0YNK2
Show all
Predicted intracellular proteins
Protein evidence (Ezkurdia et al 2014)
Show all
73 aa
7.7 kDa
No 0
DCAF11-211
H0YMZ4
Show all
Predicted intracellular proteins
Protein evidence (Ezkurdia et al 2014)
Show all
93 aa
10.1 kDa
No 0
DCAF11-213
H0YM86
Show all
Predicted intracellular proteins
Protein evidence (Ezkurdia et al 2014)
Show all
149 aa
16.6 kDa
No 0
DCAF11-216
H0YM56
Show all
Predicted intracellular proteins
Protein evidence (Ezkurdia et al 2014)
Show all
108 aa
11.8 kDa
No 0
DCAF11-217
Q8TEB1
Show all
Predicted intracellular proteins
Mapped to neXtProt
Protein evidence (Kim et al 2014)
Protein evidence (Ezkurdia et al 2014)
Show all
546 aa
61.7 kDa
No 0
DCAF11-218
H0YL98
Show all
Predicted intracellular proteins
Protein evidence (Ezkurdia et al 2014)
Show all
265 aa
29.8 kDa
No 0
DCAF11-219
H0YNT0
Show all
Predicted intracellular proteins
Protein evidence (Ezkurdia et al 2014)
Show all
104 aa
11.7 kDa
No 0
DCAF11-220
H0YN21
Show all
Predicted intracellular proteins
Protein evidence (Ezkurdia et al 2014)
Show all
90 aa
9.9 kDa
No 0
DCAF11-221
H0YMF7
Show all
Predicted intracellular proteins
Protein evidence (Ezkurdia et al 2014)
Show all
118 aa
13.1 kDa
No 0
DCAF11-222
H0YLQ1
Show all
Predicted intracellular proteins
Protein evidence (Ezkurdia et al 2014)
Show all
30 aa
2.9 kDa
No 0
DCAF11-225
H0YKR8
Show all
Predicted intracellular proteins
Protein evidence (Ezkurdia et al 2014)
Show all
142 aa
15.7 kDa
No 0
DCAF11-226
H0YLX7
Show all
Predicted intracellular proteins
Protein evidence (Ezkurdia et al 2014)
Show all
67 aa
7 kDa
No 0
DCAF11-230
H0YN15
Show all
Predicted intracellular proteins
Protein evidence (Ezkurdia et al 2014)
Show all
106 aa
11.8 kDa
No 0
DCAF11-232
H0YLH4
Show all
Predicted intracellular proteins
Protein evidence (Ezkurdia et al 2014)
Show all
116 aa
12.9 kDa
No 0
DCAF11-233
H0YLB2
Show all
Predicted intracellular proteins
Protein evidence (Ezkurdia et al 2014)
Show all
145 aa
16.1 kDa
No 0
DCAF11-234
H0YMN6
Show all
Predicted intracellular proteins
Protein evidence (Ezkurdia et al 2014)
Show all
128 aa
14.2 kDa
No 0
DCAF11-236
H0YNS2
Show all
Predicted intracellular proteins
Protein evidence (Ezkurdia et al 2014)
Show all
154 aa
17 kDa
No 0
DCAF11-238
H0YN92
Show all
Predicted intracellular proteins
Protein evidence (Ezkurdia et al 2014)
Show all
182 aa
20.5 kDa
No 0

Contact

  • NEWS ARTICLES
  • PRESS ROOM

The Project

  • INTRODUCTION
  • ORGANIZATION
  • PUBLICATIONS

The Human Protein Atlas

  • DOWNLOADABLE DATA
  • LICENCE & CITATION
  • HELP & FAQ
The Human Protein Atlas project is funded
by the Knut & Alice Wallenberg Foundation.


contact@proteinatlas.org