We use cookies to enhance the usability of our website. If you continue, we'll assume that you are happy to receive all cookies. More information. Don't show this again.
General description of the gene and the encoded protein(s) using information from HGNC and Ensembl, as well as predictions made by the Human Protein Atlas project.
Gene namei
Official gene symbol, which is typically a short form of the gene name, according to HGNC.
Assigned HPA protein class(es) for the encoded protein(s).
Disease related genes Enzymes Human disease related genes Metabolic proteins Potential drug targets
Predicted locationi
All transcripts of all genes have been analyzed regarding the location(s) of corresponding protein based on prediction methods for signal peptides and transmembrane regions.
Genes with at least one transcript predicted to encode a secreted protein, according to prediction methods or to UniProt location data, have been further annotated and classified with the aim to determine if the corresponding protein(s) are secreted or actually retained in intracellular locations or membrane-attached.
Remaining genes, with no transcript predicted to encode a secreted protein, will be assigned the prediction-based location(s).
The annotated location overrules the predicted location, so that a gene encoding a predicted secreted protein that has been annotated as intracellular will have intracellular as the final location.
Gene information from Ensembl and Entrez, as well as links to available gene identifiers are displayed here. Information was retrieved from Ensembl if not indicated otherwise.
Chromosome
6
Cytoband
q21
Chromosome location (bp)
109690609 - 109878098
Number of transcriptsi
Number of protein-coding transcripts from the gene as defined by Ensembl.
Useful information about the protein provided by UniProt.
Dual specificity phosphatase component of the PI(3,5)P2 regulatory complex which regulates both the synthesis and turnover of phosphatidylinositol 3,5-bisphosphate (PtdIns(3,5)P2) 1,2. Catalyzes the dephosphorylation of phosphatidylinositol 3,5-bisphosphate (PtdIns(3,5)P2) to form phosphatidylinositol 3-phosphate 3. Has serine-protein phosphatase activity acting on PIKfyve to stimulate its lipid kinase activity, its catalytically activity being required for maximal PI(3,5)P2 production 4. In vitro, hydrolyzes all three D5-phosphorylated polyphosphoinositide and although displaying preferences for PtdIns(3,5)P2, it is capable of hydrolyzing PtdIns(3,4,5)P3 and PtdIns(4,5)P2, at least in vitro 5....show less
Molecular function (UniProt)i
Keywords assigned by UniProt to proteins due to their particular molecular function.
Hydrolase
Gene summary (Entrez)i
Useful information about the gene from Entrez
The protein encoded by this gene belongs to the SAC domain-containing protein gene family. The SAC domain, approximately 400 amino acids in length and consisting of seven conserved motifs, has been shown to possess phosphoinositide phosphatase activity. The yeast homolog, Sac1p, is involved in the regulation of various phosphoinositides, and affects diverse cellular functions such as actin cytoskeleton organization, Golgi function, and maintenance of vacuole morphology. Membrane-bound phosphoinositides function as signaling molecules and play a key role in vesicle trafficking in eukaryotic cells. Mutations in this gene have been associated with Charcot-Marie-Tooth disease, type 4J. [provided by RefSeq, Jul 2008]...show less
PROTEIN INFORMATIONi
The protein information section displays alternative protein-coding transcripts (splice variants) encoded by this gene according to the Ensembl database.
The ENSP identifier links to the Ensembl website protein summary, while the ENST identifier links to the Ensembl website transcript summary for the selected splice variant. The data in the UniProt column can be expanded to show links to all matching UniProt identifiers for this protein.
The protein classes assigned to this protein are shown if expanding the data in the protein class column. Parent protein classes are in bold font and subclasses are listed under the parent class.
The Gene Ontology terms assigned to this protein are listed if expanding the Gene ontology column. The length of the protein (amino acid residues according to Ensembl), molecular mass (kDalton), predicted signal peptide (according to a majority of the signal peptide predictors SPOCTOPUS, SignalP 4.0, and Phobius) and the number of predicted transmembrane region(s) (according to MDM) are also reported.
Enzymes ENZYME proteins Hydrolases Metabolic proteins Predicted membrane proteins Prediction method-based Membrane proteins predicted by MDM MEMSAT-SVM predicted membrane proteins Phobius predicted membrane proteins SPOCTOPUS predicted membrane proteins THUMBUP predicted membrane proteins # TM segments-based 1TM proteins predicted by MDM Disease related genes Potential drug targets Human disease related genes Congenital malformations Congenital malformations of the nervous system Other congenital malformations Nervous system diseases Neurodegenerative diseases Mapped to neXtProt neXtProt - Evidence at protein level Protein evidence (Kim et al 2014) Protein evidence (Ezkurdia et al 2014)
Metabolic proteins Predicted intracellular proteins Intracellular proteins predicted by MDM and MDSEC Human disease related genes Congenital malformations Congenital malformations of the nervous system Other congenital malformations Nervous system diseases Neurodegenerative diseases Protein evidence (Ezkurdia et al 2014)
Metabolic proteins Predicted intracellular proteins Intracellular proteins predicted by MDM and MDSEC Human disease related genes Congenital malformations Congenital malformations of the nervous system Other congenital malformations Nervous system diseases Neurodegenerative diseases Protein evidence (Ezkurdia et al 2014)
Metabolic proteins Predicted intracellular proteins Intracellular proteins predicted by MDM and MDSEC Human disease related genes Congenital malformations Congenital malformations of the nervous system Other congenital malformations Nervous system diseases Neurodegenerative diseases Protein evidence (Ezkurdia et al 2014)