We use cookies to enhance the usability of our website. If you continue, we'll assume that you are happy to receive all cookies. More information. Don't show this again.
General description of the gene and the encoded protein(s) using information from HGNC and Ensembl, as well as predictions made by the Human Protein Atlas project.
Gene namei
Official gene symbol, which is typically a short form of the gene name, according to HGNC.
Assigned HPA protein class(es) for the encoded protein(s).
Disease related genes Enzymes Human disease related genes Metabolic proteins Plasma proteins Potential drug targets
Predicted locationi
All transcripts of all genes have been analyzed regarding the location(s) of corresponding protein based on prediction methods for signal peptides and transmembrane regions.
Genes with at least one transcript predicted to encode a secreted protein, according to prediction methods or to UniProt location data, have been further annotated and classified with the aim to determine if the corresponding protein(s) are secreted or actually retained in intracellular locations or membrane-attached.
Remaining genes, with no transcript predicted to encode a secreted protein, will be assigned the prediction-based location(s).
The annotated location overrules the predicted location, so that a gene encoding a predicted secreted protein that has been annotated as intracellular will have intracellular as the final location.
Gene information from Ensembl and Entrez, as well as links to available gene identifiers are displayed here. Information was retrieved from Ensembl if not indicated otherwise.
Chromosome
1
Cytoband
p36.11
Chromosome location (bp)
23801885 - 23838620
Number of transcriptsi
Number of protein-coding transcripts from the gene as defined by Ensembl.
Useful information about the protein provided by UniProt.
Mitochondrial 3-hydroxymethyl-3-methylglutaryl-CoA lyase that catalyzes a cation-dependent cleavage of (S)-3-hydroxy-3-methylglutaryl-CoA into acetyl-CoA and acetoacetate, a key step in ketogenesis. Terminal step in leucine catabolism. Ketone bodies (beta-hydroxybutyrate, acetoacetate and acetone) are essential as an alternative source of energy to glucose, as lipid precursors and as regulators of metabolism....show less
Molecular function (UniProt)i
Keywords assigned by UniProt to proteins due to their particular molecular function.
Lyase
Biological process (UniProt)i
Keywords assigned by UniProt to proteins because they are involved in a particular biological process.
Lipid metabolism
Ligand (UniProt)i
Keywords assigned by UniProt to proteins because they bind, are associated with, or whose activity is dependent of some molecule.
Metal-binding
Gene summary (Entrez)i
Useful information about the gene from Entrez
The protein encoded by this gene belongs to the HMG-CoA lyase family. It is a mitochondrial enzyme that catalyzes the final step of leucine degradation and plays a key role in ketone body formation. Mutations in this gene are associated with HMG-CoA lyase deficiency. Alternatively spliced transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Oct 2009]...show less
PROTEIN INFORMATIONi
The protein information section displays alternative protein-coding transcripts (splice variants) encoded by this gene according to the Ensembl database.
The ENSP identifier links to the Ensembl website protein summary, while the ENST identifier links to the Ensembl website transcript summary for the selected splice variant. The data in the UniProt column can be expanded to show links to all matching UniProt identifiers for this protein.
The protein classes assigned to this protein are shown if expanding the data in the protein class column. Parent protein classes are in bold font and subclasses are listed under the parent class.
The Gene Ontology terms assigned to this protein are listed if expanding the Gene ontology column. The length of the protein (amino acid residues according to Ensembl), molecular mass (kDalton), predicted signal peptide (according to a majority of the signal peptide predictors SPOCTOPUS, SignalP 4.0, and Phobius) and the number of predicted transmembrane region(s) (according to MDM) are also reported.
Metabolic proteins SPOCTOPUS predicted secreted proteins Predicted intracellular proteins Intracellular proteins predicted by MDM and MDSEC Human disease related genes Congenital disorders of metabolism Congenital disorders of amino acid metabolism Protein evidence (Ezkurdia et al 2014)
Enzymes ENZYME proteins Lyases Metabolic proteins Secreted proteins predicted by MDSEC Phobius predicted secreted proteins SPOCTOPUS predicted secreted proteins Predicted intracellular proteins Plasma proteins Disease related genes Potential drug targets Human disease related genes Congenital disorders of metabolism Congenital disorders of amino acid metabolism Mapped to neXtProt neXtProt - Evidence at protein level Protein evidence (Kim et al 2014) Protein evidence (Ezkurdia et al 2014)
Enzymes ENZYME proteins Lyases Metabolic proteins Secreted proteins predicted by MDSEC Phobius predicted secreted proteins SPOCTOPUS predicted secreted proteins Predicted intracellular proteins Plasma proteins Disease related genes Potential drug targets Human disease related genes Congenital disorders of metabolism Congenital disorders of amino acid metabolism Mapped to neXtProt neXtProt - Evidence at protein level Protein evidence (Kim et al 2014) Protein evidence (Ezkurdia et al 2014)