We use cookies to enhance the usability of our website. If you continue, we'll assume that you are happy to receive all cookies. More information. Don't show this again.
General description of the gene and the encoded protein(s) using information from HGNC and Ensembl, as well as predictions made by the Human Protein Atlas project.
Gene namei
Official gene symbol, which is typically a short form of the gene name, according to HGNC.
Assigned HPA protein class(es) for the encoded protein(s).
Cancer-related genes Disease related genes Enzymes Human disease related genes Metabolic proteins Plasma proteins Potential drug targets
Predicted locationi
All transcripts of all genes have been analyzed regarding the location(s) of corresponding protein based on prediction methods for signal peptides and transmembrane regions.
Genes with at least one transcript predicted to encode a secreted protein, according to prediction methods or to UniProt location data, have been further annotated and classified with the aim to determine if the corresponding protein(s) are secreted or actually retained in intracellular locations or membrane-attached.
Remaining genes, with no transcript predicted to encode a secreted protein, will be assigned the prediction-based location(s).
The annotated location overrules the predicted location, so that a gene encoding a predicted secreted protein that has been annotated as intracellular will have intracellular as the final location.
Gene information from Ensembl and Entrez, as well as links to available gene identifiers are displayed here. Information was retrieved from Ensembl if not indicated otherwise.
Chromosome
1
Cytoband
p36.12
Chromosome location (bp)
21509397 - 21578410
Number of transcriptsi
Number of protein-coding transcripts from the gene as defined by Ensembl.
Useful information about the protein provided by UniProt.
Alkaline phosphatase that metabolizes various phosphate compounds and plays a key role in skeletal mineralization and adaptive thermogenesis 1,2,3. Has broad substrate specificity and can hydrolyze a considerable variety of compounds: however, only a few substrates, such as diphosphate (inorganic pyrophosphate; PPi), pyridoxal 5'-phosphate (PLP) and N-phosphocreatine are natural substrates 4,5. Plays an essential role in skeletal and dental mineralization via its ability to hydrolyze extracellular diphosphate, a potent mineralization inhibitor, to phosphate: it thereby promotes hydroxyapatite crystal formation and increases inorganic phosphate concentration 6,7. Acts in a non-redundant manner with PHOSPHO1 in skeletal mineralization: while PHOSPHO1 mediates the initiation of hydroxyapatite crystallization in the matrix vesicles (MVs), ALPL/TNAP catalyzes the spread of hydroxyapatite crystallization in the extracellular matrix (By similarity). Also promotes dephosphorylation of osteopontin (SSP1), an inhibitor of hydroxyapatite crystallization in its phosphorylated state; it is however unclear whether ALPL/TNAP mediates SSP1 dephosphorylation via a direct or indirect manner (By similarity). Catalyzes dephosphorylation of PLP to pyridoxal (PL), the transportable form of vitamin B6, in order to provide a sufficient amount of PLP in the brain, an essential cofactor for enzymes catalyzing the synthesis of diverse neurotransmitters 8,9. Additionally, also able to mediate ATP degradation in a stepwise manner to adenosine, thereby regulating the availability of ligands for purinergic receptors (By similarity). Also capable of dephosphorylating microbial products, such as lipopolysaccharides (LPS) as well as other phosphorylated small-molecules, such as poly-inosine:cytosine (poly I:C) 10. Acts as a key regulator of adaptive thermogenesis as part of the futile creatine cycle: localizes to the mitochondria of thermogenic fat cells and acts by mediating hydrolysis of N-phosphocreatine to initiate a futile cycle of creatine dephosphorylation and phosphorylation (By similarity). During the futile creatine cycle, creatine and N-phosphocreatine are in a futile cycle, which dissipates the high energy charge of N-phosphocreatine as heat without performing any mechanical or chemical work (By similarity)....show less
Molecular function (UniProt)i
Keywords assigned by UniProt to proteins due to their particular molecular function.
Hydrolase
Biological process (UniProt)i
Keywords assigned by UniProt to proteins because they are involved in a particular biological process.
Biomineralization
Ligand (UniProt)i
Keywords assigned by UniProt to proteins because they bind, are associated with, or whose activity is dependent of some molecule.
Calcium, Magnesium, Metal-binding, Zinc
Gene summary (Entrez)i
Useful information about the gene from Entrez
This gene encodes a member of the alkaline phosphatase family of proteins. There are at least four distinct but related alkaline phosphatases: intestinal, placental, placental-like, and liver/bone/kidney (tissue non-specific). The first three are located together on chromosome 2, while the tissue non-specific form is located on chromosome 1. The product of this gene is a membrane bound glycosylated enzyme that is not expressed in any particular tissue and is, therefore, referred to as the tissue-nonspecific form of the enzyme. Alternative splicing results in multiple transcript variants, at least one of which encodes a preproprotein that is proteolytically processed to generate the mature enzyme. This enzyme may play a role in bone mineralization. Mutations in this gene have been linked to hypophosphatasia, a disorder that is characterized by hypercalcemia and skeletal defects. [provided by RefSeq, Oct 2015]...show less
PROTEIN INFORMATIONi
The protein information section displays alternative protein-coding transcripts (splice variants) encoded by this gene according to the Ensembl database.
The ENSP identifier links to the Ensembl website protein summary, while the ENST identifier links to the Ensembl website transcript summary for the selected splice variant. The data in the UniProt column can be expanded to show links to all matching UniProt identifiers for this protein.
The protein classes assigned to this protein are shown if expanding the data in the protein class column. Parent protein classes are in bold font and subclasses are listed under the parent class.
The Gene Ontology terms assigned to this protein are listed if expanding the Gene ontology column. The length of the protein (amino acid residues according to Ensembl), molecular mass (kDalton), predicted signal peptide (according to a majority of the signal peptide predictors SPOCTOPUS, SignalP 4.0, and Phobius) and the number of predicted transmembrane region(s) (according to MDM) are also reported.
Enzymes ENZYME proteins Hydrolases Metabolic proteins Predicted membrane proteins Prediction method-based Membrane proteins predicted by MDM MEMSAT3 predicted membrane proteins MEMSAT-SVM predicted membrane proteins SCAMPI predicted membrane proteins SPOCTOPUS predicted membrane proteins # TM segments-based 1TM proteins predicted by MDM Plasma proteins Cancer-related genes Candidate cancer biomarkers Disease related genes Potential drug targets Human disease related genes Congenital disorders of metabolism Congenital disorders of cofactor/vitamin metabolism Mapped to neXtProt neXtProt - Evidence at protein level Protein evidence (Kim et al 2014) Protein evidence (Ezkurdia et al 2014)
Enzymes ENZYME proteins Hydrolases Metabolic proteins MEMSAT3 predicted membrane proteins MEMSAT-SVM predicted membrane proteins SCAMPI predicted membrane proteins SPOCTOPUS predicted membrane proteins Predicted intracellular proteins Intracellular proteins predicted by MDM and MDSEC Plasma proteins Cancer-related genes Candidate cancer biomarkers Disease related genes Potential drug targets Human disease related genes Congenital disorders of metabolism Congenital disorders of cofactor/vitamin metabolism Mapped to neXtProt neXtProt - Evidence at protein level Protein evidence (Kim et al 2014) Protein evidence (Ezkurdia et al 2014)